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1    Introduction 
 

The objective of this project is to develop formal technology to support the de- 
velopment of secure systems. Presently much research and practice in security 
is concerned with particular enforcement mechanisms, and implementation or 
code-level vulnerabilities. At this late stage in the development of a system many 
security flaws are difficult to detect and fix.  A more general formulation of se- 
curity supports specification and analysis, and provides strong implementation- 
independent guarantees. It makes it possible to consider security from the early 
design of a system. To contribute toward this goal this project exploits results 
on the compositionality of information-flow properties to develop formal models 
and lightweight formal techniques that  allow the specification and analysis of 
confidentiality and integrity requirements, and can be used to explore the design 
space of systems meeting such requirements. 

 
 

2    Technical Background 
 

This research seeks to develop rigorous specification and analysis techniques to 
support the development of secure systems. The next section briefly describes 
their theoretical foundation. The following gives the preliminaries for the logic 
used to formalize them. 

 
2.1    Information  Flow and Basic Security Properties 

 

Many security requirements can be met by restricting the flow of information. 
Goguen and Meseguer introduced this approach to security [3], and defined 
its fundamental property, noninterference. Intuitively, A is noninterfering with 
B if the actions of A have no effect on the observations of B.  This provides 
confidentiality for A, and integrity  for B.  Over the years noninterference has 
been found to be either too restrictive, not restrictive enough, or not suitable 
for nondeterministic systems. As a result a number of variants of it have been 
defined, which have the same basic intuition,  and collectively are known as 
information-flow properties. When they hold, many subtle attacks that exploit 
programs by using legitimate access to data are simply ruled out.  Thus, this 
approach to security contributes to the goal of inherently secure systems. 

To be able to manage the analysis of complex systems it is necessary to 
have some divide-and-conquer approaches. General theories of compositionality 
for safety and liveness  properties, for example, make it possible to infer the 
properties of a system from the properties of its components.  Information- 
flow properties, however, fall outside this framework. Furthermore, in general, 
these properties do not compose. However, over the years disparate treatments 
have shown that  some properties, or restrictions of properties, do compose. 
[7, 8, 9, 10, 12]. More recently, Heiko Mantel proposed a unifying treatment of 
information-flow properties [4], in which these previous results can be rederived, 
and which also makes possible the definition of new information-flow properties, 
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and the derivation of their compositional properties. 
Mantel discovered a set of very basic elementary information-flow properties, 

which he calls Basic Security Properties (BSP’s), and proved a collection of 
theorems stating how: 

• some BSP’s (some individually, others in combinations) imply other BSP’s 

• known information-flow properties are defined in terms of BSP’s 

• known information-flow properties are related by implication 

• under what conditions these BSP’s are preserved under composition 

• under what conditions BSP’s are trivially satisfied. 
 

It turns out that under composition trivially satisfied BSP’s might lead to the 
emergence of nontrivial information-flow properties. 

With  this framework as a theoretical foundation we developed an inference 
system for the specification and analysis of information-flow properties.  The 
next section briefly describes the logic used. 

 
2.2    Rewriting  Logic and Maude 

 

Rewriting logic [11, 1] is an executable computational logic that has been shown 
to be a very general logical and semantic framework [6, 5]. In rewriting logic 
computation and deduction coincide. It can be used to specify a system and 
define its semantics, or specify logics and formal tools that mechanize deduction. 

A system or a logic is specified by a rewrite theory 
 

R = (Σ, E, R), 

where signature Σ defines its syntax, E is a set of equations, and R is a set of 
rewrite rules. 

When R = (Σ, E, R) specifies a system, the structure of its states is specified 
as an algebraic data type by (Σ, E), while its transitions are specified by the 
rewrite rules in R, which have the following form: 

 

l : t → tl if cond . 

A label l names each rule. The Σ-terms t and tl specify patterns of fragments of 
the state of the system. Whenever the condition cond holds, a local concurrent 
transition takes place: a state fragment that is an instance of t changes into a 
state fragment that is the corresponding instance of tl . 

Rewriting logic has no particular syntax, which makes it possible for (Σ, E) 
to define a domain-specific  language, with  whatever structure is appropriate. 
Consequently, the states and the transitions describe the system without any 
extraneous encodings imposed by the logic.   This supports the goal of this 
research of lowering the technical barrier to rigorous specification and analysis 
of systems. 
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When R = (Σ, E, R) specifies a logical system, Σ specifies its logical con- 
nectives; E, the structural properties of its propositions;  and R, specifies the 
inference rules of the system, which concurrently rewrite formulas into other 
formulas, constructing proofs in the logic. 

Rewriting logic has been implemented  as the Maude system [2], which sup- 
ports specification, programming, and verification. The models and techniques 
developed in this project have been implemented  in Maude. 

 
 

3    Compositionality Assistant 
 

Component-based design provides a way of simplifying the design of complex 
systems. Components can be analyzed separately, and properties of systems 
composed from them can be inferred from those of the components. We have de- 
veloped a Compositionality Assistant, a rewrite theory RCA = (ΣCA , ECA , RCA ), 
implemented in Maude. Given some components  assumed to satisfy some given 
security properties, it supports the exploration of designs of secure systems built 
from them. 

 
3.1    Model 

 

In various treatments of security, including Mantel’s, a nondeterministic system 
is represented by an event  system, a tuple (E, I , O, Tr ), where  E  is a set of 
events, I and O are disjoint subsets of E, the set of input events, and the set of 
output events, respectively, and Tr  is the set of behaviors of the system, which 
are sequences of events. Included in the signature ΣCA  are sorts (types) and 
operators to represent events and systems. The sets of events of a system would 
be represented by a term 

 
|e>  E  |i> I |o>  O 

 
of sort Interface, where E, I, and O are terms of sort EventSet. 

To define security requirements a set of security domains D is introduced, 
and for each domain D ∈ D, a view νD .  For example, a set of domains could 
be {H, L}, for High and Low, or in an agent-based application, different sets of 
agents could constitute the domains. A view for a domain D, νD = (V, N, C ) 
partitions the set of events E into a set V of events that are visible from domain 
D, a set C of events that are confidential, kept secret from domain D, and a 
set N of events that are neither visible, nor secret, but could be deduced. We 
represent a view in Maude by a term 

 
|v>  V  |n>  N  |c>  C 

 
of sort View, with subterms of sort EventSet. 

To ensure that the constraints a view imposes on information flow are met a 
worst-case assumption is made: untrusted users might have complete knowledge 
of the system specification. BSP’s are closure properties on the set Tr  of traces 
of a system that require sufficiently many possible traces such that an adversary 
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cannot deduce information of a particular kind [4]. Mantel’s framework  based on 
BSP’s can express information-flow in the literature, such as separability, per- 
fect security property, etc.  These and new information-flow properties can be 
defined as conjunctions of BSP’s. Maude supports object-based specifications, 
in which a configuration is constructed by an associative and commutative op- 
erator. Thus, we model a component that satisfies information-flow properties 
as a configuration of objects that denote the satisfaction of BSP’s. 

The formalization of the Compositionality Assistant has a class for each 
BSP. Each BSP is a closure property on Tr .  If there is some trace t ∈ Tr  of 
a particular form, described in terms of elements of the sets of the view, and 
for some BSP’s, of other subsets of E, it requires that some trace tl obtained 
from t by the deletion or insertion of some specified events, be also in Tr . To 
express that a component specified by the event system ES = (E, I , O, Tr ), for 
a given view νD = (V, N, C ), satisfies a BSP, say BSD , we use an object of the 
following form: 

< Id  : BSD  | 
interface : |e>  E  |i> I |o>  O, 
view  : |v>  V  |n>  N  |c>  C  > . 

Classes for other BSP’s have additional attributes  for the parametric sets of 
events they require. 

Each component has an identifier, above Id.  A secure component, that is, 
one that satisfies one or more BSP’s, or properties defined in terms of BSP’s, is 
modelled by a configuration of objects, each with the component identifier. 

 
3.2    Design-Space Exploration 

 

Theorems in [4] relate BSP’s of a component by implication, define under what 
conditions BSP’s of components are preserved when they are composed, and 
conditions in which BSP’s are trivially satisfied. These theorems are formalized 
in RCA as rules of the form: 

l : t → tl  if cond , 

where t and tl are configurations of objects denoting security properties of com- 
ponents. If the condition cond is true the security property represented by t 
implies the security property represented by tl .  Proofs are constructed by the 
application of these rules. Given a configuration of objects specifying the prop- 
erties a set of components satisfies it is possible, in general, to construct proofs of 
other properties the components satisfy, and by equationally ”connecting” out- 
puts of one component to inputs of another, to construct proofs of properties of 
the resulting composite system. 

Aside from the BSP classes mentioned above, there are also superclasses 
BasicSecProp and SecurityProp. 

 

sorts Total R  BSD  BSI BSIA FCD  FCD  BasicSecProp SecurityProp . 
subsort Total < SecurityProp . 
subsorts R  BSD  BSI BSIA FCD  FCI < BasicSecProp < SecurityProp . 
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Given a configuration expressing the security properties of a set of components, 
it might be possible to construct zero, one, or many properties implied by those 
denoted by the configuration. 

Using Maude’s search command we may query the system about security 
properties of interest. This would automatically generate proofs by the appli- 
cation of the rules in RCA , and present the one or more solutions requested, or 
report that no solution to our query was found. 

For example, suppose we have two components, with identifiers id1 and id2. 
A configuration of objects would specify their security properties, and equations 
identifying outputs of one to inputs of the other would specify the particular 
composition of these components to be analyzed. The inference system deduces 
properties implied by those of the components, in the specified composition, 
by transforming this initial  configuration. The security properties of any com- 
ponent or system are represented by objects with the identifier of the system. 
A system composed from components with identifiers id1  and id2  would have 
identifier id1  . id2.  Thus, the presence of an object with such identifier would 
indicate that the corresponding composite system satisfies a security property. 

To learn, for example, whether the composite system satisfied any BSP we 
would submit the following query: 

 
search  system 

=> * 
[ < id1  . id2  : BasicSecProp | Atts:AttributeSet > 

C:Configuration ] . 
 

Given a specification system, this command queries whether the inference sys- 
tem can construct a configuration with the pattern described within the square 
brackets. Such a configuration would have an object with identifier id1  . id2 
of the class BasicSecProp, which is a superclass of each BSP-class.  Neither the 
particular values of the attributes of this object, nor the particular constituents 
of the rest of the configuration are of interest, and so these are represented by 
variable Atts of sort AttributeSet and variable C of sort Configuration, re- 
spectively. Any configuration with this pattern represents the statement that 
the composite system with identifier id1  . id2 satisfies some BSP. This query 
would generate all the possible proofs of this statement, and return all the con- 
figurations matching the pattern. 

To learn whether there is some particular BSP, say BSD , that this system 
satisfies the query would be: 

 
search  [1] system 

=> * 
[ < id1  . id2  : BSD  | Atts:AttributeSet > 

C:Configuration ] . 
 

Only one solution would be generated, if there is at least one proof. (We could 
specify some other limit  on the number of solutions.)  Otherwise, the system 
would report that there is no solution. 
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The views of the components induce a set of possible views for systems 
composed from them. If interested in a particular view, the query would have 
the following form: 

 
search  [1] system 

=> * 
[ < id1  . id2  : BSD  | 

view  : |v>  V:EventSet  |n>  N:EventSet  |c>  c12, 
Atts:AttributeSet > 

C:Configuration ] . 
 

The subterms of the view could all be ground (having no variables), or we could 
constrain only one of the sets of the view.  The above example, is concerned 
with a view that keeps the set of events c12 secret. It does not matter whether 
the remaining events are visible or deducible. Only if BSD is satisfied for this 
particular specification view, would there be a solution. 

One may also define information-flow properties known from the literature, 
or newly defined for a particular application. A new class would be introduced: 

 
sort MyInfoFlowProp  . 
subsort MyInfoFlowProp  < SecurityProp . 

 
Included in the set of equations  ECA  there would be a configuration of BSP 
objects defined to be our new property.  The following query would determine 
whether a composite system could satisfy it. 

 
search  [1] system 

=> * 
[ < id1  . id2  : MyInfoFlowProp  | 

view  : |v>  V:EventSet  |n>  N:EventSet  |c>  c12, 
Atts:AttributeSet > 

C:Configuration ] . 
 

With  these sorts of queries, and also with model-checking commands, it is 
possible to explore the design space for some application or system. 

Securing cyberspace is a major concern for government, military,  and com- 
mercial enterprises.  Much of the practice and research on security addresses it 
at the implementation or late stages of system development. Other approaches 
are based on semiformal methods, which are not suited for the rigorous analysis 
that the security of systems requires. Security needs to be considered from the 
earliest stages of system design, and for this rigorous, formal support is required. 
This project has sought to contribute toward that end by taking as its theoretical 
foundation the very flexible compositionality results from Mantel’s information- 
flow security framework, and by developing lightweight  formal methods that 
exploit those results to support the exploration of the design space. We briefly 
indicate below the objective of the remainder for this project. 
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4    Next 
 

While the system we have described can be useful in designing secure systems, 
it can have spatial and time limitations.   BSP’s for one view and parametric 
event sets induce BSP’s for other related views and subsets of the parametric 
sets. Thus, we have a combinatorial growth in the proof search space. While 
we developed some optimization techniques that reduced this search space, we 
will investigate next models that would have a greater impact on the efficiency 
and scalability of our techniques. 
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